direct product, metabelian, nilpotent (class 2), monomial, 3-elementary
Aliases: C2×C33.31C32, C9⋊C9⋊7C6, C32⋊C9.18C6, C6.7(C9○He3), (C3×C6).25C33, (C32×C9).20C6, (C3×C18).8C32, C33.42(C3×C6), (C32×C18).8C3, (C32×C6).30C32, C32.29(C32×C6), C6.7(C3×3- 1+2), (C3×C6).83- 1+2, C3.7(C6×3- 1+2), C32.8(C2×3- 1+2), (C2×C9⋊C9)⋊4C3, (C3×C9).25(C3×C6), C3.7(C2×C9○He3), (C2×C32⋊C9).9C3, SmallGroup(486,201)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C33.31C32
G = < a,b,c,d,e,f | a2=b3=c3=e3=1, d3=c, f3=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ede-1=bd=db, be=eb, bf=fb, fdf-1=cd=dc, ce=ec, cf=fc, ef=fe >
Subgroups: 198 in 114 conjugacy classes, 72 normal (12 characteristic)
C1, C2, C3, C3, C3, C6, C6, C6, C9, C32, C32, C32, C18, C3×C6, C3×C6, C3×C6, C3×C9, C3×C9, C33, C3×C18, C3×C18, C32×C6, C32⋊C9, C9⋊C9, C32×C9, C2×C32⋊C9, C2×C9⋊C9, C32×C18, C33.31C32, C2×C33.31C32
Quotients: C1, C2, C3, C6, C32, C3×C6, 3- 1+2, C33, C2×3- 1+2, C32×C6, C3×3- 1+2, C9○He3, C6×3- 1+2, C2×C9○He3, C33.31C32, C2×C33.31C32
(1 143)(2 144)(3 136)(4 137)(5 138)(6 139)(7 140)(8 141)(9 142)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 100)(20 101)(21 102)(22 103)(23 104)(24 105)(25 106)(26 107)(27 108)(28 88)(29 89)(30 90)(31 82)(32 83)(33 84)(34 85)(35 86)(36 87)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 115)(56 116)(57 117)(58 109)(59 110)(60 111)(61 112)(62 113)(63 114)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 80 53)(2 81 54)(3 73 46)(4 74 47)(5 75 48)(6 76 49)(7 77 50)(8 78 51)(9 79 52)(10 114 23)(11 115 24)(12 116 25)(13 117 26)(14 109 27)(15 110 19)(16 111 20)(17 112 21)(18 113 22)(28 121 151)(29 122 152)(30 123 153)(31 124 145)(32 125 146)(33 126 147)(34 118 148)(35 119 149)(36 120 150)(37 67 85)(38 68 86)(39 69 87)(40 70 88)(41 71 89)(42 72 90)(43 64 82)(44 65 83)(45 66 84)(55 105 92)(56 106 93)(57 107 94)(58 108 95)(59 100 96)(60 101 97)(61 102 98)(62 103 99)(63 104 91)(127 136 154)(128 137 155)(129 138 156)(130 139 157)(131 140 158)(132 141 159)(133 142 160)(134 143 161)(135 144 162)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)(109 112 115)(110 113 116)(111 114 117)(118 121 124)(119 122 125)(120 123 126)(127 130 133)(128 131 134)(129 132 135)(136 139 142)(137 140 143)(138 141 144)(145 148 151)(146 149 152)(147 150 153)(154 157 160)(155 158 161)(156 159 162)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(2 54 81)(3 73 46)(5 48 75)(6 76 49)(8 51 78)(9 79 52)(10 23 114)(11 115 24)(13 26 117)(14 109 27)(16 20 111)(17 112 21)(28 121 151)(30 153 123)(31 124 145)(33 147 126)(34 118 148)(36 150 120)(37 67 85)(39 87 69)(40 70 88)(42 90 72)(43 64 82)(45 84 66)(55 105 92)(57 94 107)(58 108 95)(60 97 101)(61 102 98)(63 91 104)(127 136 154)(129 156 138)(130 139 157)(132 159 141)(133 142 160)(135 162 144)
(1 116 89 80 25 41 53 12 71)(2 114 84 81 23 45 54 10 66)(3 112 88 73 21 40 46 17 70)(4 110 83 74 19 44 47 15 65)(5 117 87 75 26 39 48 13 69)(6 115 82 76 24 43 49 11 64)(7 113 86 77 22 38 50 18 68)(8 111 90 78 20 42 51 16 72)(9 109 85 79 27 37 52 14 67)(28 154 102 121 127 98 151 136 61)(29 161 106 122 134 93 152 143 56)(30 159 101 123 132 97 153 141 60)(31 157 105 124 130 92 145 139 55)(32 155 100 125 128 96 146 137 59)(33 162 104 126 135 91 147 144 63)(34 160 108 118 133 95 148 142 58)(35 158 103 119 131 99 149 140 62)(36 156 107 120 129 94 150 138 57)
G:=sub<Sym(162)| (1,143)(2,144)(3,136)(4,137)(5,138)(6,139)(7,140)(8,141)(9,142)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,88)(29,89)(30,90)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,115)(56,116)(57,117)(58,109)(59,110)(60,111)(61,112)(62,113)(63,114)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,80,53)(2,81,54)(3,73,46)(4,74,47)(5,75,48)(6,76,49)(7,77,50)(8,78,51)(9,79,52)(10,114,23)(11,115,24)(12,116,25)(13,117,26)(14,109,27)(15,110,19)(16,111,20)(17,112,21)(18,113,22)(28,121,151)(29,122,152)(30,123,153)(31,124,145)(32,125,146)(33,126,147)(34,118,148)(35,119,149)(36,120,150)(37,67,85)(38,68,86)(39,69,87)(40,70,88)(41,71,89)(42,72,90)(43,64,82)(44,65,83)(45,66,84)(55,105,92)(56,106,93)(57,107,94)(58,108,95)(59,100,96)(60,101,97)(61,102,98)(62,103,99)(63,104,91)(127,136,154)(128,137,155)(129,138,156)(130,139,157)(131,140,158)(132,141,159)(133,142,160)(134,143,161)(135,144,162), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,157,160)(155,158,161)(156,159,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (2,54,81)(3,73,46)(5,48,75)(6,76,49)(8,51,78)(9,79,52)(10,23,114)(11,115,24)(13,26,117)(14,109,27)(16,20,111)(17,112,21)(28,121,151)(30,153,123)(31,124,145)(33,147,126)(34,118,148)(36,150,120)(37,67,85)(39,87,69)(40,70,88)(42,90,72)(43,64,82)(45,84,66)(55,105,92)(57,94,107)(58,108,95)(60,97,101)(61,102,98)(63,91,104)(127,136,154)(129,156,138)(130,139,157)(132,159,141)(133,142,160)(135,162,144), (1,116,89,80,25,41,53,12,71)(2,114,84,81,23,45,54,10,66)(3,112,88,73,21,40,46,17,70)(4,110,83,74,19,44,47,15,65)(5,117,87,75,26,39,48,13,69)(6,115,82,76,24,43,49,11,64)(7,113,86,77,22,38,50,18,68)(8,111,90,78,20,42,51,16,72)(9,109,85,79,27,37,52,14,67)(28,154,102,121,127,98,151,136,61)(29,161,106,122,134,93,152,143,56)(30,159,101,123,132,97,153,141,60)(31,157,105,124,130,92,145,139,55)(32,155,100,125,128,96,146,137,59)(33,162,104,126,135,91,147,144,63)(34,160,108,118,133,95,148,142,58)(35,158,103,119,131,99,149,140,62)(36,156,107,120,129,94,150,138,57)>;
G:=Group( (1,143)(2,144)(3,136)(4,137)(5,138)(6,139)(7,140)(8,141)(9,142)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,88)(29,89)(30,90)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,115)(56,116)(57,117)(58,109)(59,110)(60,111)(61,112)(62,113)(63,114)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,80,53)(2,81,54)(3,73,46)(4,74,47)(5,75,48)(6,76,49)(7,77,50)(8,78,51)(9,79,52)(10,114,23)(11,115,24)(12,116,25)(13,117,26)(14,109,27)(15,110,19)(16,111,20)(17,112,21)(18,113,22)(28,121,151)(29,122,152)(30,123,153)(31,124,145)(32,125,146)(33,126,147)(34,118,148)(35,119,149)(36,120,150)(37,67,85)(38,68,86)(39,69,87)(40,70,88)(41,71,89)(42,72,90)(43,64,82)(44,65,83)(45,66,84)(55,105,92)(56,106,93)(57,107,94)(58,108,95)(59,100,96)(60,101,97)(61,102,98)(62,103,99)(63,104,91)(127,136,154)(128,137,155)(129,138,156)(130,139,157)(131,140,158)(132,141,159)(133,142,160)(134,143,161)(135,144,162), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,157,160)(155,158,161)(156,159,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (2,54,81)(3,73,46)(5,48,75)(6,76,49)(8,51,78)(9,79,52)(10,23,114)(11,115,24)(13,26,117)(14,109,27)(16,20,111)(17,112,21)(28,121,151)(30,153,123)(31,124,145)(33,147,126)(34,118,148)(36,150,120)(37,67,85)(39,87,69)(40,70,88)(42,90,72)(43,64,82)(45,84,66)(55,105,92)(57,94,107)(58,108,95)(60,97,101)(61,102,98)(63,91,104)(127,136,154)(129,156,138)(130,139,157)(132,159,141)(133,142,160)(135,162,144), (1,116,89,80,25,41,53,12,71)(2,114,84,81,23,45,54,10,66)(3,112,88,73,21,40,46,17,70)(4,110,83,74,19,44,47,15,65)(5,117,87,75,26,39,48,13,69)(6,115,82,76,24,43,49,11,64)(7,113,86,77,22,38,50,18,68)(8,111,90,78,20,42,51,16,72)(9,109,85,79,27,37,52,14,67)(28,154,102,121,127,98,151,136,61)(29,161,106,122,134,93,152,143,56)(30,159,101,123,132,97,153,141,60)(31,157,105,124,130,92,145,139,55)(32,155,100,125,128,96,146,137,59)(33,162,104,126,135,91,147,144,63)(34,160,108,118,133,95,148,142,58)(35,158,103,119,131,99,149,140,62)(36,156,107,120,129,94,150,138,57) );
G=PermutationGroup([[(1,143),(2,144),(3,136),(4,137),(5,138),(6,139),(7,140),(8,141),(9,142),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,100),(20,101),(21,102),(22,103),(23,104),(24,105),(25,106),(26,107),(27,108),(28,88),(29,89),(30,90),(31,82),(32,83),(33,84),(34,85),(35,86),(36,87),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,115),(56,116),(57,117),(58,109),(59,110),(60,111),(61,112),(62,113),(63,114),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,80,53),(2,81,54),(3,73,46),(4,74,47),(5,75,48),(6,76,49),(7,77,50),(8,78,51),(9,79,52),(10,114,23),(11,115,24),(12,116,25),(13,117,26),(14,109,27),(15,110,19),(16,111,20),(17,112,21),(18,113,22),(28,121,151),(29,122,152),(30,123,153),(31,124,145),(32,125,146),(33,126,147),(34,118,148),(35,119,149),(36,120,150),(37,67,85),(38,68,86),(39,69,87),(40,70,88),(41,71,89),(42,72,90),(43,64,82),(44,65,83),(45,66,84),(55,105,92),(56,106,93),(57,107,94),(58,108,95),(59,100,96),(60,101,97),(61,102,98),(62,103,99),(63,104,91),(127,136,154),(128,137,155),(129,138,156),(130,139,157),(131,140,158),(132,141,159),(133,142,160),(134,143,161),(135,144,162)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108),(109,112,115),(110,113,116),(111,114,117),(118,121,124),(119,122,125),(120,123,126),(127,130,133),(128,131,134),(129,132,135),(136,139,142),(137,140,143),(138,141,144),(145,148,151),(146,149,152),(147,150,153),(154,157,160),(155,158,161),(156,159,162)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(2,54,81),(3,73,46),(5,48,75),(6,76,49),(8,51,78),(9,79,52),(10,23,114),(11,115,24),(13,26,117),(14,109,27),(16,20,111),(17,112,21),(28,121,151),(30,153,123),(31,124,145),(33,147,126),(34,118,148),(36,150,120),(37,67,85),(39,87,69),(40,70,88),(42,90,72),(43,64,82),(45,84,66),(55,105,92),(57,94,107),(58,108,95),(60,97,101),(61,102,98),(63,91,104),(127,136,154),(129,156,138),(130,139,157),(132,159,141),(133,142,160),(135,162,144)], [(1,116,89,80,25,41,53,12,71),(2,114,84,81,23,45,54,10,66),(3,112,88,73,21,40,46,17,70),(4,110,83,74,19,44,47,15,65),(5,117,87,75,26,39,48,13,69),(6,115,82,76,24,43,49,11,64),(7,113,86,77,22,38,50,18,68),(8,111,90,78,20,42,51,16,72),(9,109,85,79,27,37,52,14,67),(28,154,102,121,127,98,151,136,61),(29,161,106,122,134,93,152,143,56),(30,159,101,123,132,97,153,141,60),(31,157,105,124,130,92,145,139,55),(32,155,100,125,128,96,146,137,59),(33,162,104,126,135,91,147,144,63),(34,160,108,118,133,95,148,142,58),(35,158,103,119,131,99,149,140,62),(36,156,107,120,129,94,150,138,57)]])
102 conjugacy classes
| class | 1 | 2 | 3A | ··· | 3H | 3I | ··· | 3N | 6A | ··· | 6H | 6I | ··· | 6N | 9A | ··· | 9R | 9S | ··· | 9AJ | 18A | ··· | 18R | 18S | ··· | 18AJ |
| order | 1 | 2 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 |
| size | 1 | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 1 | ··· | 1 | 3 | ··· | 3 | 3 | ··· | 3 | 9 | ··· | 9 | 3 | ··· | 3 | 9 | ··· | 9 |
102 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 |
| type | + | + | ||||||||||
| image | C1 | C2 | C3 | C3 | C3 | C6 | C6 | C6 | 3- 1+2 | C2×3- 1+2 | C9○He3 | C2×C9○He3 |
| kernel | C2×C33.31C32 | C33.31C32 | C2×C32⋊C9 | C2×C9⋊C9 | C32×C18 | C32⋊C9 | C9⋊C9 | C32×C9 | C3×C6 | C32 | C6 | C3 |
| # reps | 1 | 1 | 6 | 18 | 2 | 6 | 18 | 2 | 6 | 6 | 18 | 18 |
Matrix representation of C2×C33.31C32 ►in GL6(𝔽19)
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 18 | 0 | 0 |
| 0 | 0 | 0 | 0 | 18 | 0 |
| 0 | 0 | 0 | 0 | 0 | 18 |
| 7 | 0 | 0 | 0 | 0 | 0 |
| 0 | 7 | 0 | 0 | 0 | 0 |
| 0 | 0 | 7 | 0 | 0 | 0 |
| 0 | 0 | 0 | 11 | 0 | 0 |
| 0 | 0 | 0 | 0 | 11 | 0 |
| 0 | 0 | 0 | 0 | 0 | 11 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 11 | 0 | 0 |
| 0 | 0 | 0 | 0 | 11 | 0 |
| 0 | 0 | 0 | 0 | 0 | 11 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 7 | 10 | 0 |
| 0 | 0 | 0 | 13 | 12 | 1 |
| 0 | 0 | 0 | 5 | 11 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 7 | 0 | 0 | 0 | 0 |
| 0 | 0 | 11 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 7 | 11 | 0 |
| 0 | 0 | 0 | 1 | 0 | 7 |
| 9 | 0 | 0 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 | 0 |
| 0 | 0 | 9 | 0 | 0 | 0 |
| 0 | 0 | 0 | 16 | 0 | 0 |
| 0 | 0 | 0 | 17 | 5 | 0 |
| 0 | 0 | 0 | 16 | 0 | 17 |
G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,7,13,5,0,0,0,10,12,11,0,0,0,0,1,0],[1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,7,1,0,0,0,0,11,0,0,0,0,0,0,7],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,16,17,16,0,0,0,0,5,0,0,0,0,0,0,17] >;
C2×C33.31C32 in GAP, Magma, Sage, TeX
C_2\times C_3^3._{31}C_3^2 % in TeX
G:=Group("C2xC3^3.31C3^2"); // GroupNames label
G:=SmallGroup(486,201);
// by ID
G=gap.SmallGroup(486,201);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,979,548,2169,93]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=e^3=1,d^3=c,f^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,f*d*f^-1=c*d=d*c,c*e=e*c,c*f=f*c,e*f=f*e>;
// generators/relations